Java 类名:com.alibaba.alink.operator.stream.feature.OverTimeWindowStreamOp
Python 类名:OverTimeWindowStreamOp
OverTime窗口是OverWindow的一种,基于OverWindow,使用聚合函数进行流式特征构造。给定一行数据,将生成的特征追加在后面,输出一行数据,特征生成方式由clause(表达式决定)。
clause当前支持全部flink支持的聚合函数,并在此基础上额外支持了一系列聚合函数。
详细用法请参考 http://aboutdata.top/api/tutorial/appendix_aggregate_function.html
Alink支持的窗口, 其中Group窗口是输出窗口聚合统计量,OVER窗口是给定一行数据,将窗口特征追加到数据后面,输出带特征的一行数据。
各窗口的详细用法请参考 https://www.yuque.com/pinshu/alink_guide/dffffm
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
clause | 运算语句 | 运算语句 | String | ✓ | ||
timeCol | 时间戳列(TimeStamp) | 时间戳列(TimeStamp) | String | ✓ | 所选列类型为 [TIMESTAMP] | |
groupCols | 分组列名数组 | 分组列名,多列,可选,默认不选 | String[] | null | ||
latency | 水位线的延迟 | 水位线的延迟,默认0.0 | Double | 0.0 | ||
precedingTime | 时间窗口大小 | 时间窗口大小 | String | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
watermarkType | 水位线的类别 | 水位线的类别 | String | “PERIOD”, “PUNCTUATED” | “PERIOD” |
from pyalink.alink import * import pandas as pd useLocalEnv(1) sourceFrame = pd.DataFrame([ [0, 0, 0, 1], [0, 2, 0, 2], [0, 1, 1, 3], [0, 3, 1, 4], [0, 3, 3, 5], [0, 0, 3, 6], [0, 0, 4, 7], [0, 3, 4, 8], [0, 1, 2, 9], [0, 2, 2, 10], ]) source = StreamOperator.fromDataframe(sourceFrame,schemaStr="user int, device long, ip long, timeCol long") op = OverTimeWindowStreamOp().setTimeCol("timeCol").setPrecedingTime(10.0).setGroupCols(["user"]).setClause("count_preceding(ip) as countip") source.select('user, device, ip, to_timestamp(timeCol) as timeCol').link(op).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.feature.OverTimeWindowStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import com.alibaba.alink.operator.stream.sql.SqlCmdStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class OverTimeWindowStreamOpTest { @Test public void testOverTimeWindowStreamOp() throws Exception { List <Row> sourceFrame = Arrays.asList( Row.of(0, 0, 0, 1L), Row.of(0, 2, 0, 2L), Row.of(0, 1, 1, 3L), Row.of(0, 3, 1, 4L), Row.of(0, 3, 3, 5L), Row.of(0, 0, 3, 6L), Row.of(0, 0, 4, 7L), Row.of(0, 3, 4, 8L), Row.of(0, 1, 2, 9L), Row.of(0, 2, 2, 10L) ); StreamOperator <?> streamSource = new MemSourceStreamOp(sourceFrame, "user int, device int, ip int, timeCol long"); StreamOperator <?> op = new OverTimeWindowStreamOp().setTimeCol("timeCol").setPrecedingTime(10.0) .setGroupCols("user").setClause("count_preceding(ip) as countip"); streamSource.select("user, device, ip, to_timestamp(timeCol) as timeCol").link(op).print(); StreamOperator.execute(); } }
user | device | ip | timeCol | countip |
---|---|---|---|---|
0 | 0 | 0 | 1970-01-01 08:00:00.001 | 0 |
0 | 2 | 0 | 1970-01-01 08:00:00.002 | 1 |
0 | 1 | 1 | 1970-01-01 08:00:00.003 | 2 |
0 | 3 | 1 | 1970-01-01 08:00:00.004 | 3 |
0 | 3 | 3 | 1970-01-01 08:00:00.005 | 4 |
0 | 0 | 3 | 1970-01-01 08:00:00.006 | 5 |
0 | 0 | 4 | 1970-01-01 08:00:00.007 | 6 |
0 | 3 | 4 | 1970-01-01 08:00:00.008 | 7 |
0 | 1 | 2 | 1970-01-01 08:00:00.009 | 8 |
0 | 2 | 2 | 1970-01-01 08:00:00.01 | 9 |